首页 > 知识问答 > 三角形的性质,三角形的性质是什么

三角形的性质,三角形的性质是什么

来源:互联网 时间:2024-11-21 18:41:41 浏览量:

1,三角形的性质是什么

三角形的性质为:1、三角形有三个角;2、三角形由三条线段组成的封闭图形;3、三角形三个内角和绝对是180°;4、任意两边的边长和必须大于第三条边. 直角三角形的性质为:1、只有一个角是直角;2、另外两个角只能是锐角,角度之和为90°;3、底和高,高是在边上面. 等腰三角形的性质为:1、两条腰相等;2、两个夹角相等. 直角等腰三角形的性质为:1、两条腰相等;2、任何直角等腰三角形的形状完全相等(尽管大小不同);3、三个角度数必须为45°、45°、90°. 等边三角形的性质为:1、三条边相等;2、任何等边三角形形状完全相等(尽管大小不同);3、三个角的度数必须为180° 如果还有问题请追问,没有问题请点击左下角采纳满意答案.请谅解!

2,三角形的性质和定理

三角形的基本性质:性质1:三角形的两边之和大于第三边;两边之差小于第三边。(三角形边的关系)。性质2:三角形三个内角的和等于180°(三个内角之间的关系)。性质3:三角形具有稳定性。三角形定理有如下:1 、在平面上三角形的内角和等于180°(内角和定理)。2 、在平面上三角形的外角和等于360° (外角和定理)。3、 在平面上三角形的外角等于与其不相邻的两个内角之和。推论:三角形的一个外角大于任何一个和它不相邻的内角。4、 一个三角形的三个内角中最少有两个锐角。5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。相似三角形:1.一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。2.如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。3.如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。4.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。

3,一般三角形有哪些性质

三角形的性质 1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。 2.三角形内角和等于180度 3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。 4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。直角三角形斜边的中线等于斜边的一半。 5.三角形共有六心:三角形的内心、外心、重心、垂心、欧拉线 内心:三条角平分线的交点,也是三角形内切圆的圆心。 性质:到三边距离相等。 外心:三条中垂线的交点,也是三角形外接圆的圆心。 性质:到三个顶点距离相等。 重心:三条中线的交点。 性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。 垂心:三条高所在直线的交点。 性质:此点分每条高线的两部分乘积 旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点 性质:到三边的距离相等。 界心:经过三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点。 性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点。 欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 6.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的内角之和。 7.一个三角形最少有2个锐角。 8.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线 9.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。 10.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么a??+b??=c?? 那么这个三角形就一定是直角三角形。三角形的边角之间的关系 (1)三角形三内角和等于180°; (2)三角形的一个外角等于和它不相邻的两个内角之和; (3)三角形的一个外角大于任何一个和它不相邻的内角; (4)三角形两边之和大于第三边,两边之差小于第三边; (5)在同一个三角形内,大边对大角,大角对大边. (6)三角形中的四条特殊的线段:角平分线,中线,高,中位线. (7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等. (8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等. (9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。 (10)三角形的三条高的交点叫做三角形的垂心。 (11)三角形的中位线平行于第三边且等于第三边的1/2。 注意:①三角形的内心、重心都在三角形的内部 .②钝角三角形垂心、外心在三角形外部。 ③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边中点。)④锐角三角形垂心、外心在三角形内部。特殊三角形 1.相似三角形 (1)形状相同但大小不同的两个三角形叫做相似三角形 (2)相似三角形性质 相似三角形对应边成比例,对应角相等 相似三角形对应边的比叫做相似比 相似三角形的周长比等于相似比,面积比等于相似比的平方 相似三角形对应线段(角平分线、中线、高)相等 (3)相似三角形的判定 【1】三边对应成比例则这两个三角形相似 【2】两边对应成比例及其夹角相等,则两三角形相似 【3】两角对应相等则两三角形相似 2.全等三角形 (1)能够完全重合的两个三角形叫做全等三角形. (2)全等三角形的性质。 全等三角形对应角(边)相等。 全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。 (3)全等三角形的判定 ① SAS ②ASA ③AAS ④SSS ⑤HL (RT三角形) 3.等腰三角形 等腰三角形的性质: (1)两底角相等; (2)顶角的角平分线、底边上的中线和底边上的高互相重合; 等腰三角形的判定: (1)等角对等边; (2)两底角相等; 4.等边三角形 等边三角形的性质: (1)顶角的角平分线、底边上的中线和底边上的高互相重合; (2)等边三角形的各角都相等,并且都等于60°。 等边三角形的判定: (1)三个角都相等的三角形是等边三角形; (2)有一个角等于60°的等腰三角形是等边三角形.三角形的面积公式 (1)S△=1/2*ah(a是三角形的底,h是底所对应的高) (2)S△=1/2*ac*sinB=1/2*bc*sinA=1/2*ab*sinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数) (3)S△=√〔s*(s-a)*(s-b)*(s-c)〕 【s=1/2(a+b+c)】 (4)S△=abc/(4R)【R是外接圆半径】 (5)S△=1/2*(a+b+c)*r 【r是内切圆半径】 (6) | a b 1 | S△=1/2 * | c d 1 | | e f 1 | 【| a b 1 | | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC | e f 1 | 选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】生活中的三角形物品 雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。 三角形全等的条件 注意:只有三个角相等无法推出两个三角形全等 (1)三边对应相等的两个三角形相等,简写为“SSS”。 (2)两角和它们的夹边对应相等的两个三角形全等,简写成“ASA”。 (3)两角和其中一角的对边对应相等的两个三角形全等,简写成“AAS”。 (4)两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”。 (5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL”。 全等三角形的性质 全等三角形的对应角相等,对应边也相等。三角形中的线段 中线:顶点与对边中点的连线,平分三角形。 高:顶点到对边垂足的连线。 角平分线:顶点到两边距离相等的点所构成的直线。 中位线:任意两边中点的连线。三角形相关定理 重心定理 三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍. 上述交点叫做三角形的重心. 外心定理 三角形的三边的垂直平分线交于一点. 这点叫做三角形的外心. 垂心定理 三角形的三条高交于一点. 这点叫做三角形的垂心. 内心定理 三角形的三内角平分线交于一点. 这点叫做三角形的内心. 旁心定理 三角形一内角平分线和另外两顶点处的外角平分线交于一点. 这点叫做三角形的旁心.三角形有三个旁心. 三角形的重心、外心、垂心、内心、旁心称为三角形的五心. 它们都是三角形的重要相关点. 中位线定理 三角形的中位线平行于第三边且等于第三边的一半. 三边关系定理 三角形任意两边之和大于第三边,任意两边之差小于第三边. 勾股定理 在Rt三角形ABC中,A≤90度,则 AB·AB+AC·AC=BC·BC A〉90度,则 AB·AB+AC·AC>BC·BC 梅涅劳斯定理 梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 证明: 过点A作AG‖BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。 塞瓦定理 设O是△ABC内任意一点, AO、BO、CO分别交对边于D、E、F,则 BD/DC*CE/EA*AF/FB=1 证法简介 (Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截, ∴ CB/BD*DO/OA*AE/EC=1 ① 而由△ABD被直线COF所截,∴ BC/CD*DO/OA*AF/BF=1② ②÷①:即得:BD/DC*CE/EA*AF/FB=1 (Ⅱ)也可以利用面积关系证明 ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③ 同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/ [(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。

© 噜噜熊-出国留学网 版权所有 |

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)